A systematic study of rare gas atoms encapsulated in small fullerenes using dispersion corrected density functional theory
نویسندگان
چکیده
The most stable fullerene structures from C20 to C60 are chosen to study the energetics and geometrical consequences of encapsulating the rare gas elements He, Ne, or Ar inside the fullerene cage using dispersion corrected density functional theory. An exponential increase in stability is found with increasing number of carbon atoms. A similar exponential law is found for the volume expansion of the cage due to rare gas encapsulation with decreasing number of carbon atoms. We show that dispersion interactions become important with increasing size of the fullerene cage, where Van der Waals forces between the rare gas atom and the fullerene cage start to dominate over repulsive interactions. The smallest fullerenes where encapsulation of a rare gas element is energetically still favorable are He@C48, Ne@C52, and Ar@C58. While dispersion interactions follow the trend Ar > Ne > He inside C60 due to the trend in the rare gas dipole polarizabilities, repulsive forces become soon dominant with smaller cage size and we have a complete reversal for the energetics of rare gas encapsulation at C50.
منابع مشابه
Highly Sensitive Detection of H2S Molecules Using a TiO2-Supported Au Overlayer Based Nanosensors: A Van Der Waals Corrected DFT Study
The adsorption of the H2S molecule on the undoped and N-doped TiO2 anatase supported Au nanoparticles were studied using density functional theory calculations. The adsorption of H2S on both Au and TiO2 sides of the nanoparticle was examined. On the TiO2 side, the fivefold coordinated titanium site was found to be the most favorable binding site, giving rise to the strong interaction of H2S wit...
متن کاملAdenine molecule interacting with golden nanocluster: A dispersion corrected DFT study
The interaction between nanoparticles and biomolecules such as protein andDNA is one of the major instructions of nanobiotechnology research. In this study,we have explored the interaction of adenine nucleic base with a representativegolden cluster (Au13) by using dispersion corrected density functional theory(DFT-D3) within GGA-PBE model of theory. Various active sites ...
متن کاملAdsorption of ozone molecules on AlP-codoped stanene nanosheet: A density functional theory study
Density functional theory calculations were carried out to investigate the structural and electronicproperties of the adsorption of O3 molecules on AlP-codoped monolayers to fully exploit the gas sensingcapability of these two-dimensional materials. Various adsorption sites of O3 molecule on the considerednanosheets were examined in detail. The side oxygen atoms of the O3 mole...
متن کاملElectronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملA DFT study of the nuclear magnetic properties of fullerenes
The stable configurations, electronic structure and magnetic properties of B16N16, B8C24, Al and P inserted (BC3)8 was studied by performing density functional theory (DFT) calculations of the NMR parameters. The results indicate that B8C24 has semiconductivity property and be effectively modified by inserti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2015